AI-Assisted Neurocognitive Assessment Protocol for Older Adults with Psychiatric Disorders
Última modificación: 2024-11-29
Resumen
Abstract: Evaluating neurocognitive functions and diagnosing psychiatric disorders in older adults is challenging due to the complexity of symptoms and individual differences. An innovative approach that combines the accuracy of artificial intelligence (AI) with the depth of neuropsychological assessments is needed. Objectives: This paper presents a novel protocol for AI-assisted neurocognitive assessment aimed at addressing the cognitive, emotional, and functional dimensions of older adults with psychiatric disorders. It also explores potential compensatory mechanisms. Methodology: The proposed protocol incorporates a comprehensive, personalized approach to neurocognitive evaluation. It integrates a series of standardized and validated psychometric tests with individualized interpretation tailored to the patient's specific conditions. The protocol utilizes AI to enhance diagnostic accuracy by analyzing data from these tests and supplementing observations made by researchers. Results: The AI-assisted protocol offers several advantages, including a thorough and customized evaluation ofneurocognitive functions. It employs machine learning algorithms to analyze test results, generating an individualized neurocognitive profile that highlights patterns and trends useful for clinical decision-making. The integration of AI allows for a deeper understanding of the patient’s cognitive and emotional state, as well as potential compensatory strategies. Conclusions: By integrating AI with neuropsychological evaluation, this protocol aims to significantly improve the quality of neurocognitive assessments. It provides a more precise and individualized analysis, which has the potential to enhance clinical decision-making and overall patient care for older adults with psychiatric disorders.
Citas
1. McClintock S, Minto L, Denney D, Bailey K, Cullum C, Dotson V. Clinical Neuropsychological Evaluation in Older Adults With Major Depressive Disorder. Current Psychiatry Reports. 2021;23. https://doi.org/10.1007/s11920-021-01267-32. Ruf B, Lowe J. A-254 Psychiatric History and Cognitive Impairment in a Subpopulation of Older Adults in a Psychiatric Hospital. Archives of Clinical Neuropsychology. 2022;37(6):1398. https://doi.org/10.1093/arclin/acac060.2543. Kotik-Friedgut B, Ardila A. A.R. Luria’s cultural neuropsychology in the 21st century. Culture & Psychology. 2020;26:274-86. https://doi.org/10.1177/1354067X198610534. Howieson D. Current limitations of neuropsychological tests and assessment procedures. The Clinical Neuropsychologist. 2019;33:200-8. https://doi.org/10.1080/13854046.2018.15527625. Rodriguez-Salgado A, Llibre-Guerra J, Tsoy E, Peñalver-Guia A, Bringas G, Erlhoff S, et al. A Brief Digital Cognitive Assessment for Detection of Cognitive Impairment in Cuban Older Adults. Journal of Alzheimer's disease: JAD. 2020;79(1):85-94. https://doi.org/10.3233/JAD-2009856. Peña-Casanova J, Sigg-Alonso J. Functional Systems and Brain Functional Units Beyond Luria, With Luria: Anatomical Aspects. Lurian Journal. 2020;1:48-76. https://doi.org/10.15826/LURIAN.2020.1.1.67. Aversi-Ferreira T, Tamaishi-Watanabe B, Magri M, Aversi-Ferreira R. Neuropsychology of the temporal lobe: Luria's and contemporary conceptions. Dementia & Neuropsychologia. 2019;13:251-8. https://doi.org/10.1590/1980-57642018dn13-0300018. Donders J. The incremental value of neuropsychological assessment: A critical review. The Clinical Neuropsychologist. 2020;34(56-87). https://doi.org/10.1080/13854046.2019.15754719. Tosi G, Borsani C, Castiglioni S, Daini R, Franceschi M, Romano D. Complexity in neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex. 2019;124:85-96. https://doi.org/10.1016/j.cortex.2019.11.00410. Battista P, Salvatore C, Berlingeri M, Cerasa A, Castiglioni I. Artificial intelligence and neuropsychological measures: The case of Alzheimer’s diseas. Neuroscience & Biobehavioral Reviews. 2020;114:211-28. https://doi.org/10.1016/j.neubiorev.2020.04.02611. Kang M, Kim S, Na D, Kim B, Yang D, Kim E, et al. Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. BMC Medical Informatics and Decision Making. 2019;19. https://doi.org/10.1186/s12911-019-0974-x12. Segato A, Marzullo A, Calimeri F, Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioengineering. 2020;4. https://doi.org/10.1063/5.001169713. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digital Medicine. 2019;2. https://doi.org/10.1038/s41746-019-0191-014. Graham S, Lee E, Jeste D, Patten R, Twamley E, Nebeker C, et al. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Research. 2019;284. https://doi.org/10.1016/j.psychres.2019.11273215. Paul V, Ferranti L, Dilts D. A lean-sprint approach to protocol development. Journal of Clinical Oncology. 2022;40(16). https://doi.org/10.1200/jco.2022.40.16_suppl.e1863916. Treichler E, Jeste D. Cognitive decline in older adults: applying multiple perspectives to develop novel prevention strategies. International Psychogeriatrics. 2019;31:913-6. https://doi.org/10.1017/S104161021900112117. Hudon C, Escudier F, Roy J, Croteau J, Cross N, Dang-Vu T, et al. Behavioral and Psychological Symptoms that Predict Cognitive Decline or Impairment in Cognitively Normal Middle-Aged or Older Adults: a Meta-Analysis. Neuropsychology Review. 2020;30:558-79. https://doi.org/10.1007/s11065-020-09437-518. Reynolds C, Jeste D, Sachdev P, Blazer D. Mental health care for older adults: recent advances and new directions in clinical practice and research. World Psychiatry. 2022;21. https://doi.org/10.1002/wps.2099619. Broche-Pérez Y, López-Pujol HA. Validation of the Cuban Version of Addenbrooke's Cognitive Examination-Revised for Screening Mild Cognitive Impairment. Dementia and geriatric cognitive disorders. 2017;44(5-6):320-7. https://doi.org/10.1159/00048134520. Matias-Guiu JA, Fernández de Bobadilla R, Escudero G, Pérez-Pérez J, Cortés A, Morenas-Rodríguez E, et al. Validation of the Spanish version of Addenbrooke's Cognitive Examination III for diagnosing dementia. Neurologia (Barcelona, Spain). 2015;30(9):545-51. https://doi.org/10.1016/j.nrl.2014.05.00421. Fernández-Fleites Z, Jiménez-Puig E, Broche-Pérez Y, Morales-Ortiz S, Luzardo DAR, Crespo-Rodríguez LR. Evaluation of sensitivity and specificity of the INECO Frontal Screening and the Frontal Assessment Battery in mild cognitive impairment. Dementia & neuropsychologia. 2021;15(1):98-104. https://doi.org/10.1590/1980-57642021dn15-01001022. Brañez-Condorena A, Soriano-Moreno D, Navarro-Flores A, Solis-Chimoy B, Diaz-Barrera M, Taype-Rondan Á. Accuracy of the Geriatric Depression Scale (GDS)-4 and GDS-5 for the screening of depression among older adults: A systematic review and meta-analysis. PloS ONE. 2021;16. https://doi.org/10.1371/journal.pone.025389923. Zhang L, Cui H, Chen Q, Li Y, Yang C, Yang Y. A web-based dynamic Nomogram for predicting instrumental activities of daily living disability in older adults: a nationally representative survey in China. BMC Geriatrics. 2021;21. https://doi.org/10.1186/s12877-021-02223-924. León-Estrada I, García-Garcia J, Roldán-Tapia L. Escala de reserva cognitiva: ajustes del modelo teórico y baremación. Revista de Neurología. 2017;64(01):7-16. https://doi.org/10.33588/rn.6401.201629525. Nogueira J, Gerardo B, Santana I, Simões M, Freitas S. The Assessment of Cognitive Reserve: A Systematic Review of the Most Used Quantitative Measurement Methods of Cognitive Reserve for Aging. Frontiers in Psychology. 2022;13. https://doi.org/10.3389/fpsyg.2022.84718626. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C, Mishkin P, et al. Training language models to follow instructions with human feedback. ArXiv. 2022;abs/2203.02155. https://doi.org/10.48550/arXiv.2203.0215527. Shin T, Razeghi Y, IV R, Wallace E, Singh S. Eliciting Knowledge from Language Models Using Automatically Generated Prompts. ArXiv. 2020;abs/2010.15980. https://doi.org/10.18653/v1/2020.emnlp-main.34628. Das A, Verma R. Can Machines Tell Stories? A Comparative Study of Deep Neural Language Models and Metrics. IEEE Access. 2020;8:181258-92. https://doi.org/10.1109/ACCESS.2020.302342129. Shen F, Silverman B, Monette P, Kimble S, Rauch S, Baker J. An Ethics Checklist for Digital Health Research in Psychiatry: Viewpoint. Journal of Medical Internet Research. 2021;24. https://doi.org/10.2196/3114630. Yamada M, Landes R, Hida A, Ishihara K, Krull K. Effects of Demographic Variables on Subjective Neurocognitive Complaints Using the Neurocognitive Questionnaire (NCQ) in an Aged Japanese Population. International Journal of Environmental Research and Public Health. 2019;16. https://doi.org/10.3390/ijerph1603042131. Varo C, Jiménez E, Solé B, Bonnín C, Torrent C, Lahera G, et al. Social cognition in bipolar disorder: the role of sociodemographic, clinical, and neurocognitive variables in emotional intelligence. Acta Psychiatrica Scandinavica. 2019;139. https://doi.org/10.1111/acps.1301432. Sturm W. Neuropsychological assessment. Journal of Neurology. 2007;254:II12-II4. https://doi.org/10.1007/s00415-007-2004-733. Castro J, Billick S. Psychiatric Presentations/Manifestations of Medical Illnesses. Psychiatric Quarterly. 2013;84:351-62. https://doi.org/10.1007/s11126-012-9251-134. Ocklenburg S, Hirnstein M, Beste C, Güntürkün O. Lateralization and cognitive systems. Frontiers in Psychology. 2014;5. https://doi.org/10.3389/fpsyg.2014.0114335. Dorman G, Boccazzi J, Flores I, O’Neill S. Relationship between occupation and cognitive performance in patients with cognitive impairment. Preliminary study. Alzheimer's & Dementia. 2023;19. https://doi.org/10.1002/alz.07933036. Guerra-Carrillo B, Katovich K, Bunge S. Does higher education hone cognitive functioning and learning efficacy? Findings from a large and diverse sample. PloS ONE. 2017;12. https://doi.org/10.1371/journal.pone.018227637. Christiansen D, McCarthy M, Seeman M. Where Sex Meets Gender: How Sex and Gender Come Together to Cause Sex Differences in Mental Illness. Frontiers in Psychiatry. 2022;13. https://doi.org/10.3389/fpsyt.2022.85643638. Mather M. The Affective Neuroscience of Aging. Annual review of psychology. 2016;67:213-38. https://doi.org/10.1146/annurev-psych-122414-03354039. Khodabandehloo E, Riboni D, Alimohammadi A. HealthXAI: Collaborative and explainable AI for supporting early diagnosis of cognitive decline. Future Generation Computer Systems. 2021;116:168-89. https://doi.org/10.1016/j.future.2020.10.03040. Pérez Valdivia Y, Rojas Sánchez G, Sánchez Castillo V, Pérez Gamboa A. La categoría bienestar psicológico y su importancia en la práctica asistencial: una revisión semisistemática. Revista Información Científica. 2024;103:e4478. https://doi.org/10.5281/zenodo.1061533741. Dricu M, Frühholz S. A neurocognitive model of perceptual decision‐making on emotional signals. Human Brain Mapping. 2019;41:1532-56. https://doi.org/10.1002/hbm.2489342. Laacke S, Mueller R, Schomerus G, Salloch S. Artificial Intelligence, Social Media and Depression. A New Concept of Health-Related Digital Autonomy. The American Journal of Bioethics. 2021;21:4-20. https://doi.org/10.1080/15265161.2020.186351543. Jacob A, Crowe M, Fazeli P, Vance D. A-61 Predictors of Subjective and Objective Everyday Functioning in Middle-Aged and Older Adults with HIV. Archives of Clinical Neuropsychology. 2021;36(6):1103. https://doi.org/10.1093/arclin/acab062.7944. Corbo I, Marselli G, Ciero V, Casagrande M. The Protective Role of Cognitive Reserve in Mild Cognitive Impairment: A Systematic Review. Journal of Clinical Medicine. 2023;12. https://doi.org/10.3390/jcm1205175945. Oren O, Gersh B, Bhatt D. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. The Lancet Digital health. 2020;29:e456-e88. https://doi.org/10.1016/s2589-7500(20)30160-646. Rauschecker A, Rudie J, Xie L, Wang J, Duong M, Botzolakis E, et al. Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI. Radiology. 2020;190283. https://doi.org/10.1148/radiol.202019028347. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making. 2021;21. https://doi.org/10.1186/s12911-021-01488-948. Johnson K, Wei W, Weeraratne D, Frisse M, Misulis K, Rhee K, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clinical and Translational Science. 2020;14:86-93. https://doi.org/10.1111/cts.1288449. Hsu C, Alavi A, Dong M. Interactive personalized recommendation systems for human health. Journal of Ambient Intelligence and Humanized Computing. 2021;12:3209-12. https://doi.org/10.1007/s12652-021-02950-250. Tang‐Wai D, Smith E, Bruneau M, Burhan A, Chatterjee A, Chertkow H, et al. CCCDTD5 recommendations on early and timely assessment of neurocognitive disorders using cognitive, behavioral, and functional scales. Alzheimer's & Dementia : Translational Research & Clinical Interventions. 2020;6. https://doi.org/10.1002/trc2.1205751. Yin J, Ngiam K, Teo H. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. Journal of Medical Internet Research. 2021;23. https://doi.org/10.2196/2575952. Topol EJ. Deep medicine: How artificial intelligence can make healthcare human again. Nueva York: Basic Books; 2019. https://psnet.ahrq.gov/issue/deep-medicine-how-artificial-intelligence-can-make-healthcare-human-again53. Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: Oportunidades y desafíos. Biol Psychiatry. 2018;83(8):712-9. https://doi.org/10.1016/j.biopsych.2017.11.00754. Verdéjo-Garcia A, Lorenzetti V, Manning V, Piercy H, Bruno R, Hester R, et al. A Roadmap for Integrating Neuroscience Into Addiction Treatment: A Consensus of the NeuroscienceInterest Group of the International Society of Addiction Medicine. Frontiers in Psychiatry. 2019;10. https://doi.org/10.3389/fpsyt.2019.0087755. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric disease and treatment. 2006;2(4):531-6. https://doi.org/10.2147/nedt.2006.2.4.53156. McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Molecular Psychiatry. 2023;28(5):1902-18. https://doi.org/10.1038/s41380-023-01949-957. Kring AM, Caponigro JM. Emotion in Schizophrenia: Where Feeling Meets Thinking. Current directions in psychological science. 2010;19(4):255-9. https://doi.org/10.1177/096372141037759958. Harvey PD, Heaton RK, Carpenter WT, Jr., Green MF, Gold JM, Schoenbaum M. Functional impairment in people with schizophrenia: focus on employability and eligibility for disability compensation. Schizophrenia research. 2012;140(1-3):1-8. https://doi.org/10.1016/j.schres.2012.03.02559. Ávila-Villanueva M, Marcos Dolado A, Gómez-Ramírez J, Fernández-Blázquez M. Brain Structural and Functional Changes in Cognitive Impairment Due to Alzheimer’s Disease. Frontiers in Psychology. 2022;13. https://doi.org/10.3389/fpsyg.2022.88661960. Heilman KM, Nadeau SE. Emotional and Neuropsychiatric Disorders Associated with Alzheimer’s Disease. Neurotherapeutics. 2022;19(1):99-116. https://doi.org/10.1007/s13311-021-01172-w61. Gure TR, Kabeto MU, Plassman BL, Piette JD, Langa KM. Differences in Functional Impairment Across Subtypes of Dementia. The Journals of Gerontology: Series A. 2009;65A(4):434-41. https://doi.org/10.1093/gerona/glp19762. Johnen A, Bertoux M. Psychological and Cognitive Markers of Behavioral Variant Frontotemporal Dementia–A Clinical Neuropsychologist's View on Diagnostic Criteria and Beyond. Frontiers in Neurology. 2019;10. https://doi.org/10.3389/fneur.2019.0059463. Balconi M, Cotelli M, Brambilla M, Manenti R, Cosseddu M, Premi E, et al. Understanding Emotions in Frontotemporal Dementia: The Explicit and Implicit Emotional Cue Mismatch. Journal of Alzheimer's Disease. 2015;46:211-25. https://doi.org/10.3233/JAD-14282664. Park S, Kim T, Shin SA, Kim YK, Sohn BK, Park H-J, et al. Behavioral and Neuroimaging Evidence for Facial Emotion Recognition in Elderly Korean Adults with Mild Cognitive Impairment, Alzheimer’s Disease, and Frontotemporal Dementia. Frontiers in Aging Neuroscience. 2017;9. https://doi.org/10.3389/fnagi.2017.0038965. Chatzidimitriou E, Ioannidis P, Moraitou D, Konstantinopoulou E, Aretouli E. The cognitive and behavioral correlates of functional status in patients with frontotemporal dementia: A pilot study. Frontiers in Human Neuroscience. 2023;17. https://doi.org/10.3389/fnhum.2023.108776566. Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, et al. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. Journal of the American College of Cardiology. 2019;73(25):3326-44. https://doi.org/10.1016/j.jacc.2019.04.03467. Deardorff WJ, Grossberg GT. Chapter 2 - Behavioral and psychological symptoms in Alzheimer's dementia and vascular dementia. In: Reus VI, Lindqvist D, editors. Handbook of Clinical Neurology. 165: Elsevier; 2019. p. 5-32. https://doi.org/https://doi.org/10.1016/B978-0-444-64012-3.00002-2 https://www.sciencedirect.com/science/article/pii/B978044464012300002268. Gkintoni E, Ortiz PS. Neuropsychology of Generalized Anxiety Disorder in Clinical Setting: A Systematic Evaluation. Healthcare (Basel, Switzerland). 2023;11(17). https://doi.org/10.3390/healthcare1117244669. Turk CL, Heimberg RG, Luterek JA, Mennin DS, Fresco DM. Emotion Dysregulation in Generalized Anxiety Disorder: A Comparison with Social Anxiety Disorder. Cognitive Therapy and Research. 2005;29(1):89-106. https://doi.org/10.1007/s10608-005-1651-170. McKnight PE, Monfort SS, Kashdan TB, Blalock DV, Calton JM. Anxiety symptoms and functional impairment: A systematic review of the correlation between the two measures. Clinical psychology review. 2016;45:115-30. https://doi.org/10.1016/j.cpr.2015.10.00571. Suhas S, Rao NP. Neurocognitive deficits in obsessive-compulsive disorder: A selective review. Indian journal of psychiatry. 2019;61(Suppl 1):S30-s6. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_517_1872. Thorsen AL, Hagland P, Radua J, Mataix-Cols D, Kvale G, Hansen B, et al. Emotional Processing in Obsessive-Compulsive Disorder: A Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies. Biological psychiatry Cognitive neuroscience and neuroimaging. 2018;3(6):563-71. https://doi.org/10.1016/j.bpsc.2018.01.00973. Huppert JD, Simpson HB, Nissenson KJ, Liebowitz MR, Foa EB. Quality of life and functional impairment in obsessive-compulsive disorder: a comparison of patients with and without comorbidity, patients in remission, and healthy controls. Depression and anxiety. 2009;26(1):39-45. https://doi.org/10.1002/da.2050674. Sumner JA, Hagan K, Grodstein F, Roberts AL, Harel B, Koenen KC. Posttraumatic stress disorder symptoms and cognitive function in a large cohort of middle-aged women. Depression and anxiety. 2017;34(4):356-66. https://doi.org/10.1002/da.2260075. Hayes JP, Vanelzakker MB, Shin LM. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Frontiers in integrative neuroscience. 2012;6:89. https://doi.org/10.3389/fnint.2012.0008976. Jellestad L, Vital NA, Malamud J, Taeymans J, Mueller-Pfeiffer C. Functional impairment in Posttraumatic Stress Disorder: A systematic review and meta-analysis. Journal of Psychiatric Research. 2021;136:14-22. https://doi.org/https://doi.org/10.1016/j.jpsychires.2021.01.03977. Bozzatello P, Blua C, Brasso C, Rocca P, Bellino S. The Role of Cognitive Deficits in Borderline Personality Disorder with Early Traumas: A Mediation Analysis. Journal of clinical medicine. 2023;12(3). https://doi.org/10.3390/jcm1203078778. D'Aurizio G, Di Stefano R, Socci V, Rossi A, Barlattani T, Pacitti F, et al. The role of emotional instability in borderline personality disorder: a systematic review. Annals of general psychiatry. 2023;22(1):9. https://doi.org/10.1186/s12991-023-00439-079. Thadani B, Pérez-García AM, Bermúdez J. Functional Impairment in Borderline Personality Disorder: The Mediating Role of Perceived Social Support. Frontiers in Psychology. 2022;13. https://doi.org/10.3389/fpsyg.2022.883833